基因突变与代谢性骨病

章振林

基金项目：国家自然科学基金项目（编号：81570794）

作者单位：200233 上海，上海交通大学附属第六人民医院骨质疏松和骨病科，骨代谢病和遗传研究室

作者简介：章振林（1966-），男，博士，主任医师，二级教授，博士研究生导师，研究方向：代谢性骨病分子机制。E-mail：ZZL2002@medmail.com.cn

本文重点介绍了遗传性代谢性骨病的病因学和分类。基因突变是机体正常代谢过程中的错误，其作用大体分为三类：（1）直接影响蛋白质功能的突变；（2）不能影响蛋白质功能，但其作用是直接影响代谢过程的突变；（3）其他突变，可能对代谢过程有影响，但其作用不明显。

基因突变与代谢性骨病

【摘要】 该文重点介绍了遗传性代谢性骨病的病因学和分类。对于临床疑诊患者，先做致病基因定位，再进行致病基因检测。大大推进了遗传性代谢性骨病致病基因的发现和临床应用。

【关键词】 代谢性骨病；基因突变；二代顺序测序

Gene mutation and metabolic bone diseases ZHANG Zhen-lin. Department of Osteoporosis and Bone Disease, Metabolic Bone Disease and Genetic Research Unit, the Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China

【Abstract】 This paper focuses on the etiology and classification of inherited metabolic bone diseases. For clinically suspected patients, the identification of pathogenic genes should be carried out to confirm the diagnosis. Especially in recent years, the wide application of next-generation sequencing technology has greatly promoted the discovery of new pathogenic genes.

【Key words】 Metabolic bone diseases; Gene mutation; Next-generation sequencing

突变是机体正常DNA序列的改变。DNA突变能够影响蛋白质功能的编码区突变，是遗传病的病因，一般涉及单个基因。单基因病的特点：(1) 简单：是指发病模式简单，环境因素作用小，致病基因定位在常染色体或性染色体，发病模式为隐性或显性；(2) 严重：是严重影响蛋白功能的基因突变所致；(3) 罕见：这些严重突变往往被自然选择淘汰。基因突变导致的代谢性骨病多在出生后或婴幼儿时期发病，严重影响骨骼生长发育，常常致残，甚至致死。单基因病防治难点：一是在于临床缺乏致病基因突变检测；二是在于预防缺乏有效的产前筛查与干预手段。因此，临床医师应尽可能地开展致病基因检测，将基因检测与临床表现结合方可确诊相关遗传病，从而开展有效治疗，同时，必须开展遗传咨询和干预才能阻止遗传病再传递。《遗传性骨质疾病病因学和分类》(2015年修订版)涵盖了一部分代谢性骨病。
表 1 骨硬化及其相关疾病

<table>
<thead>
<tr>
<th>名称</th>
<th>遗传</th>
<th>MIM 号</th>
<th>基因</th>
<th>蛋白</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>骨硬化, 严重新生儿/幼年型 (OPTB1)</td>
<td>AR</td>
<td>259700</td>
<td>TCIRG1</td>
<td>ATP 酶泵亚基</td>
<td></td>
</tr>
<tr>
<td>骨硬化, 严重新生儿/幼年型 (OPTB4)</td>
<td>AR</td>
<td>611490</td>
<td>CLCN7</td>
<td>CI− 通道 7</td>
<td></td>
</tr>
<tr>
<td>骨硬化, 严重新生儿/幼年型 (OPTB8)</td>
<td>AR</td>
<td>615085</td>
<td>SNX10</td>
<td>分选蛋白 10</td>
<td></td>
</tr>
<tr>
<td>骨硬化, 幼儿型伴神经系统损害 (OPTB5)</td>
<td>AR</td>
<td>259720</td>
<td>OSTM1</td>
<td>骨硬化相关跨膜蛋白</td>
<td></td>
</tr>
<tr>
<td>骨硬化, 中间型, 软骨细胞减少 (OPTB2)</td>
<td>AR</td>
<td>259710</td>
<td>RANKL (TNFSF11)</td>
<td>NF-κB 受体激动剂配体 (肿瘤坏死因子配体超家族成员, 11)</td>
<td></td>
</tr>
<tr>
<td>骨硬化, 幼儿型, 软骨细胞减少伴免疫球蛋白缺陷 (OPTB7)</td>
<td>AR</td>
<td>612302</td>
<td>RANK (TNFRSF11A)</td>
<td>NF-κB 受体激动剂配体</td>
<td></td>
</tr>
<tr>
<td>骨硬化, 中间型 (OPTB6)</td>
<td>AR</td>
<td>614197</td>
<td>PLEKH1</td>
<td>M 家族成员-1 的血小板-白血病 C 激酶底物同源结构域</td>
<td></td>
</tr>
<tr>
<td>骨硬化, 中间型 (OPTA2)</td>
<td>AR</td>
<td>259710</td>
<td>CLCN7</td>
<td>CI− 通道 7</td>
<td></td>
</tr>
<tr>
<td>骨硬化伴肾小管酸中毒 (OPTB3)</td>
<td>AR</td>
<td>259730</td>
<td>CA2</td>
<td>碳酸酐酶 2</td>
<td></td>
</tr>
<tr>
<td>骨硬化, 迟发 1 型 (OPTA1)</td>
<td>AD</td>
<td>607634</td>
<td>LRPI</td>
<td>低密度脂蛋白相关蛋白 5</td>
<td></td>
</tr>
<tr>
<td>骨硬化, 迟发 2 型 (OPTA2)</td>
<td>AD</td>
<td>166600</td>
<td>CLCN7</td>
<td>CI− 通道 7</td>
<td></td>
</tr>
<tr>
<td>骨硬化伴外胚层发育不良与免疫缺陷 (OLEDAD)</td>
<td>XL</td>
<td>300301</td>
<td>IKRKG</td>
<td>α 轻链抑制因子增强子激酶</td>
<td></td>
</tr>
<tr>
<td>骨硬化, 轻型伴白细胞形态缺陷综合征 (LAAD)</td>
<td>AR</td>
<td>612840</td>
<td>FERM3</td>
<td>(KIND3) 铁蛋白 3 (整合素相互作用蛋白 3)</td>
<td></td>
</tr>
<tr>
<td>骨硬化, 轻型伴白细胞形态缺陷综合征 (LAAD)</td>
<td>AR</td>
<td>612840</td>
<td>RASGRF2 (CalDAGGEF1)</td>
<td>Ras 与鸟苷酸释放蛋白 2</td>
<td></td>
</tr>
<tr>
<td>致密性成骨不全</td>
<td>AR</td>
<td>265800</td>
<td>CTSE</td>
<td>组织蛋白酶 K</td>
<td></td>
</tr>
<tr>
<td>骨质骨硬化 (骨质点症)</td>
<td>AD</td>
<td>155950</td>
<td>LEMD3</td>
<td>LEM 结构域 3</td>
<td></td>
</tr>
<tr>
<td>染色体显性伴骨质骨硬化</td>
<td>AD</td>
<td>155950</td>
<td>LEMD3</td>
<td>LEM 结构域 3</td>
<td></td>
</tr>
<tr>
<td>先天性条纹状骨病伴颅骨狭窄 (OSCS)</td>
<td>XLD</td>
<td>300373</td>
<td>WTX</td>
<td>FAM123B</td>
<td></td>
</tr>
<tr>
<td>脂质骨肥厚 (LAFS)</td>
<td>SP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>骨硬化, 脂质骨肥厚伴缺陷综合征</td>
<td>AR</td>
<td>612840</td>
<td>RASGRF2 (CalDAGGEF1)</td>
<td>Ras 与鸟苷酸释放蛋白 2</td>
<td></td>
</tr>
<tr>
<td>硬质性骨发育不全症</td>
<td>AR</td>
<td>224300</td>
<td>SLC29A3</td>
<td>溶质载体家族 29 (核苷转运蛋白)</td>
<td></td>
</tr>
</tbody>
</table>

注: AR 为隐性, AD 为显性, XL 为 X 连锁显性, SP 为散发

表 2 其他硬化性骨病

<table>
<thead>
<tr>
<th>名称</th>
<th>遗传</th>
<th>MIM 号</th>
<th>基因</th>
<th>蛋白</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>腕尺骨骺发育不良症和其他染色体显性型</td>
<td>AD</td>
<td>123000</td>
<td>ANKH</td>
<td>同源小鼠 ANKH (关节强直) 基因</td>
<td></td>
</tr>
<tr>
<td>Camurati-Engelmann 骨干燥发育不良</td>
<td>AD</td>
<td>131300</td>
<td>TGFB1</td>
<td>转化生长因子 β1</td>
<td></td>
</tr>
<tr>
<td>Ghosal 综合征</td>
<td>AR</td>
<td>231095</td>
<td>TBXAS1</td>
<td>血栓素 A 合酶 1</td>
<td></td>
</tr>
<tr>
<td>肥大性骨关节病</td>
<td>AR</td>
<td>259100</td>
<td>HPGD</td>
<td>15α-羟基前列腺素脱氢酶</td>
<td></td>
</tr>
<tr>
<td>厚皮性骨膜增生症 (肥大性骨关节病, 原发性, 常染色体显性)</td>
<td>AD</td>
<td>167100</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>眼牙骨发育不良 (ODOD) 轻型</td>
<td>AD</td>
<td>164200</td>
<td>GJA1</td>
<td>间隙连接蛋白 α-1</td>
<td></td>
</tr>
<tr>
<td>眼牙骨发育不良 (ODOD) 重型</td>
<td>AD</td>
<td>257850</td>
<td>GJA1</td>
<td>间隙连接蛋白 α-1</td>
<td></td>
</tr>
<tr>
<td>骨异常发育症伴磷酸酶血症 (青少年 Paget 病)</td>
<td>AD</td>
<td>239000</td>
<td>OPGL</td>
<td>抑制骨硬化素</td>
<td></td>
</tr>
<tr>
<td>硬骨质骨硬化病</td>
<td>AR, AD</td>
<td>269500</td>
<td>SOST</td>
<td>抑制骨硬化素</td>
<td></td>
</tr>
<tr>
<td>骨内膜骨质增生, van Buchem 型</td>
<td>AR</td>
<td>239100</td>
<td>SOST</td>
<td>硬骨素</td>
<td></td>
</tr>
<tr>
<td>毛发-牙齿-骨发育综合征</td>
<td>AR</td>
<td>190320</td>
<td>DLX3</td>
<td>同源序列末端缺失</td>
<td></td>
</tr>
<tr>
<td>颞骨骨骺发育不良症, 常染色体显性型</td>
<td>AD</td>
<td>216400</td>
<td>GJA1</td>
<td>间隙连接蛋白 α-1</td>
<td></td>
</tr>
<tr>
<td>颞骨骨骺狭窄伴恶性纤维组织细胞瘤</td>
<td>AD</td>
<td>112250</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>颞骨骨骺发育异常</td>
<td>AD</td>
<td>128600</td>
<td>SOST</td>
<td>硬骨素</td>
<td></td>
</tr>
<tr>
<td>颞骨中段骨发育异常, 髁间骨型</td>
<td>AR</td>
<td>615118</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>骨内膜硬化伴小脑发育不良</td>
<td>AR</td>
<td>213002</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Lenz-Majewski 骨胶质发育不良</td>
<td>SP</td>
<td>151050</td>
<td>PTDSS1</td>
<td>磷酸酰胺酸合酶 1</td>
<td></td>
</tr>
<tr>
<td>干骺端发育不良, Braun-Tischendorf 型</td>
<td>AD</td>
<td>605946</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Pyle 病 (家族性干骺端发育不良)</td>
<td>AR</td>
<td>265900</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

注: AR 为隐性, AD 为显性, SP 为散发
表 3 遗传性骨病分类

<table>
<thead>
<tr>
<th>名称</th>
<th>遗传</th>
<th>MIM号</th>
<th>基因</th>
<th>蛋白</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>成骨不全非致畸型（OI type 1）</td>
<td>AD</td>
<td>-</td>
<td>COL1A1</td>
<td>Ⅰ型胶原蛋白α1链</td>
<td>持续黄色巩膜型</td>
</tr>
<tr>
<td>成骨不全产期致死型（OI type 2）</td>
<td>AD, AR</td>
<td>-</td>
<td>COL1A1</td>
<td>Ⅰ型胶原蛋白α1链</td>
<td>常见致死型</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>COL1A2</td>
<td>Ⅰ型胶原蛋白α2链</td>
<td>常见致死型</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CRTAP</td>
<td>软骨相关蛋白</td>
<td>常见致死型</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LEPRE1</td>
<td>亮氨酸、脯氨酸富集的蛋白多糖（皮质蛋白）1</td>
<td>常见致死型</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PPBP</td>
<td>肽基脯氨酰酰基酶B（非骨化蛋白B）</td>
<td>常见致死型</td>
</tr>
<tr>
<td>成骨不全进行性性致畸型（OI type 3）</td>
<td>AD, AR</td>
<td>-</td>
<td>COL1A1</td>
<td>Ⅰ型胶原蛋白α1链</td>
<td>常见致死型</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>COL1A2</td>
<td>Ⅰ型胶原蛋白α2链</td>
<td>伴短骨型双侧关节强直型</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CRTAP</td>
<td>软骨相关蛋白</td>
<td>常见致死型</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LEPRE1</td>
<td>亮氨酸、脯氨酸富集的蛋白多糖1</td>
<td>常见致死型</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PPBP</td>
<td>肽基脯氨酰酰基酶B</td>
<td>常见致死型</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SERPHN1</td>
<td>丝氨酸蛋白酶抑制剂分枝H</td>
<td>成骨不全M型</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BMP1</td>
<td>骨形成蛋白1</td>
<td>成骨不全M型</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FKBPI0</td>
<td>FK506结合蛋白10</td>
<td>成骨不全M型</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PLOD2</td>
<td>原核原核氨基酸化酶2</td>
<td>成骨不全M型</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SERPINF1</td>
<td>丝氨酸蛋白酶抑制剂分枝F</td>
<td>成骨不全M型</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SP7</td>
<td>SP7转录因子（Osterix）</td>
<td>成骨不全M型</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WNT1</td>
<td>无翼型MMTV整合位点家族</td>
<td>成骨不全M型</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TEME38B</td>
<td>横跨膜蛋白38B</td>
<td>成骨不全M型</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CREB3L1</td>
<td>OASIS</td>
<td>成骨不全M型</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SEC24D</td>
<td>SEC24相关基因家族成员D</td>
<td>成骨不全M型</td>
</tr>
<tr>
<td>成骨不全中度（OI type 4）</td>
<td>AD, AR</td>
<td>-</td>
<td>COL1A1</td>
<td>Ⅰ型胶原蛋白α1链</td>
<td>无明显异常</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>COL1A2</td>
<td>Ⅰ型胶原蛋白α2链</td>
<td>无明显异常</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CRTAP</td>
<td>软骨相关蛋白</td>
<td>无明显异常</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PPBP</td>
<td>肽基脯氨酰酰基酶B</td>
<td>无明显异常</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FKBPI0</td>
<td>FK506结合蛋白10</td>
<td>无明显异常</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SERPHN1</td>
<td>丝氨酸蛋白酶抑制剂分枝F</td>
<td>成骨不全M型</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SP7</td>
<td>SP7转录因子（Osterix）</td>
<td>成骨不全M型</td>
</tr>
</tbody>
</table>

注：AR为隐性，AD为显性

表 4 异常矿化

<table>
<thead>
<tr>
<th>名称</th>
<th>遗传</th>
<th>MIM号</th>
<th>基因</th>
<th>蛋白</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>低磷酸血症性骨软化症，常染色体隐性</td>
<td>AR</td>
<td>241500</td>
<td>ALPL</td>
<td>组织非特异型磷酸酶（TNSALP）</td>
<td>家系内变异</td>
</tr>
<tr>
<td>低磷酸血症性骨软化症，常染色体显性</td>
<td>AD</td>
<td>146300</td>
<td>ALPL</td>
<td>组织非特异型磷酸酶（TNSALP）</td>
<td>包括牙齿型低磷酸血症</td>
</tr>
<tr>
<td>低磷酸血症性骨软化症，伴骨钙化异常</td>
<td>XLD</td>
<td>307800</td>
<td>PHEX</td>
<td>组织特异型磷酸酶</td>
<td>包括牙齿型低磷酸血症</td>
</tr>
<tr>
<td>低磷酸血症性骨软化症，常染色体隐性</td>
<td>AD</td>
<td>193100</td>
<td>FGFR3</td>
<td>成纤维细胞生长因子23</td>
<td>包括牙齿型低磷酸血症</td>
</tr>
<tr>
<td>低磷酸血症性骨软化症，伴骨钙化异常</td>
<td>AR</td>
<td>241500</td>
<td>DMP1</td>
<td>牙齿基质酸磷酸酯</td>
<td>包括牙齿型低磷酸血症</td>
</tr>
<tr>
<td>低磷酸血症性骨软化症，伴骨钙化异常</td>
<td>AR</td>
<td>613312</td>
<td>ENPP1</td>
<td>核苷酸内焦磷酸酶/磷酸二酯酶</td>
<td>包括牙齿型低磷酸血症</td>
</tr>
<tr>
<td>低磷酸血症性骨软化症，伴骨钙化异常</td>
<td>XLR</td>
<td>300554</td>
<td>CICN5</td>
<td>GI-通道5</td>
<td>Dent's病一部分</td>
</tr>
</tbody>
</table>

注：AR为隐性，AD为显性，XLD为X连锁显性，XLR为X连锁隐性

以上显示的《遗传性骨病病因学和分类》（2015年修订版）是在《遗传性骨病病因学和分类》（2010年版）基础上进行补充修订的，对常染色体遗传的骨关节病（MIM 259100），2015年修订版仅收录HPGD为致病基因（常染色体1型），显然存在纰漏，我们研究团队于2012年鉴定到SCLC2A1基因纯合突变也导致遗传性骨病2型（MIM 614441）[4]。

上述各类遗传性骨病可能以家族性或者散发性发病，临床诊断时要详细询问患者的家族史，包括其近亲，家族中是否有类似发病情况等。
病，在征得患者及其家族成员同意后，尽可能取其外周血，以便后续进行基因组 DNA 的抽提和突变检测。对于这些骨病的诊断可以按以下步骤进行：(1) 家族性发病，应收集所有家族成员信息，对致病者及患病家庭成员进行相关的实验室检查，包括血钙、血磷、碱性磷酸酶、肾脏功能以及肌转换生化指标等，对受累骨骼进行摄 X 线平片、骨核素扫描和双能 X 线吸收仪骨密度检查等。(2) 无论是家族性骨病还是散发病例，可根据家系图判断遗传模式，多为常染色体显性 (AD) 或隐性 (AR) 遗传，很少部分为 X 连锁，此外还有散发病例 (SP)，明确遗传模式，有助于选择致病基因检测的方式。(3) 根据临床表现和骨骼 X 线表现确定最主要的特征，拟诊一个类型代谢性骨病。(4) 依据上述遗传方式与临床主要特征与已报告的遗传性骨病进行比对，选择资源库，包括 OMIM、《遗传性骨病和骨病因学和分类》(2015 年修订版) 等，对怀疑的致病基因进行筛查。(5) 使用常规测序方法 (一代测序) 对已知基因的编码区进行测序，可以发现突变。(6) 使用二代测序方法对未知致病基因的样本进行全外显子组或全基因组测序 (二代测序近年应用在遗传性骨病中，已经发现了数十个致病基因)。

以成骨不全症 (osteogenesis imperfecta) 为例，该病的临床表现以骨脆弱性增加，结缔组织异常为特点，主要表现为蓝巩膜、骨质疏松、肌肉痛、皮肤瘀斑、肌键和韧带松弛、牙釉质合成不良、耳聋等，病情的严重程度在个体间差异极大，轻重不等，严重者可出现颅骨骨折、脑下垂体功能障碍、听觉功能障碍，甚至死亡。有的患儿在宫内或出生即发病，通常需死亡。本病为显性或隐性遗传，90% 以上成骨不全症是因编码 I 型胶原 α1 链 (COL1A1) 或 I 型胶原 α2 链 (COL1A2) 基因突变导致。[1,2] 近年遗传测序技术的应用，研究者们发现导致成骨不全症的 18 个致病基因，包括 BMP1、CREB3L1、CRTAP、FKB10、IFitm5、LEPRE1、MBTPS2、PLS3、PLD2、PIPB、SERPINF1、SERPINH1、SP7、TMEM38B、WNT1、P4HB、SEC24D 和 SPARC，国内也有类似报道。[3-12] 由于成骨不全症确诊依靠致病基因的突变分析，因此对于疑诊成骨不全症患者应该常规先使用 Sanger 测序检测其是否存在 COL1A1 或 COL1A2 基因突变，如果没有突变，可以使用目标基因靶向测序 (包含上述致病基因)，或者直接使用二代测序 (全外显子组测序)，虽然后者费用较高，但可以发现新的致病基因。

总之，尽管上述介绍的骨病多为少见或罕见病，但是中国是人口大国，罕见病患病总人数相当庞大。虽然防治任务艰巨，但是近年二代测序技术的广泛应用给予了我们揭开这些罕见病分子病因的机会。同时，为减少和避免误诊或误治，对于疑诊遗传性骨病者，临床医师应该参照上述分类开展致病基因突变检测以确诊患者，开展有效干预。

参考文献