耐碳青霉烯类肺炎克雷伯菌的耐药机制及其分子检测

李子尧，鲁炳怀

基金项目：国家重点研发计划课题(编号: 2018YFC1200100, 2018YFC1200102)

作者单位：100029 北京，中日友好医院医学研究所

作者简介：李子尧(1997-)，男，在读博士研究生，研究方向：肺炎克雷伯菌耐药机制与毒力。

通讯作者：鲁炳怀(1972-)，男，医学博士，主任医师，教授，硕士研究生导师，研究方向：临床微生物与感染病原学诊断，耐药机制。

[摘要] 肺炎克雷伯菌是引起社区获得性感染和医院感染的重要病原体，碳青霉烯类抗生素是目前治疗肺炎克雷伯菌耐药的重要抗生素，而耐碳青霉烯类肺炎克雷伯菌(CR-KP)分离率逐年提升，标志着耐碳青霉烯类肺炎克雷伯菌的耐药情况愈加严峻。耐碳青霉烯类肺炎克雷伯菌可通过β-内酰胺酶的生成，孔蛋白的改变和外排泵活性的增加导致碳青霉烯的耐药。目前分子检测方法有聚合酶链反应(PCR)类，基质辅助激光解吸电离-飞行时间质谱(MALDI-TOF MS)，下一代测序及环介导等温扩增(LAMP)技术，但部分尚未应用于临床。了解耐碳青霉烯类肺炎克雷伯菌的耐药机制，改进检测方法是重要的。

[关键词] 肺炎克雷伯菌；碳青霉烯类耐药；抗生素；耐药机制；分子检测

Drug-resistant mechanism of carbapenem-resistant Klebsiella pneumoniae and its molecular detection LI Ziyao, LU Bing-huai. Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Institute of Clinical Medicine, Beijing 100029, China

[Abstract] Klebsiella pneumoniae is an important pathogen causing community-acquired and nosocomial infections. Carbapenems are important antibiotics in the treatment of Klebsiella pneumoniae severe infection, and the isolation rate of carbapenem-resistant Klebsiella pneumoniae (CR-KP) is increasing year by year, which indicates that the antibiotics resistance of CR-KP is becoming more and more serious. CR-KP can lead to carbapenem resistance through the production of β-lactamase, the change of porin and the increase of efflux pump activity. At present, the molecular detection methods include polymerase chain reaction (PCR), matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), next generation sequencing and loop-mediated isothermal amplification (LAMP) technology, but some of them have not been used in clinical practice. It is essential to understand the drug-resistant mechanism of CR-KP and to improve the detection method.

[Key words] Klebsiella pneumoniae; Carbapenem resistance; Antibiotics; Drug-resistant mechanism; Molecular detection
肺炎克雷伯菌是一种机会性病原体，可引起社区获得性感染和医院感染，约占所有革兰阴性感染的1/3。如尿道感染、膀胱炎、肺炎、外科伤口感染。在口腔内膜炎和败血症，特别多见于免疫力低下的人群[1]。高毒力的肺炎克雷伯菌还会导致坏死性肺炎。化脓性肝脓肿和内源性眼内炎[2-4]。碳青霉烯类抗生素耐药的主要原因是由丝氨酸作为他们的活化位点。阿米卡星和头孢他啶是广谱碳青霉烯类抗生素，可导致对碳青霉烯类抗生素的耐药性。在临床中，碳青霉烯类抗生素耐药性是目前最常用的分类方法，是目前最常用的分类方法。第一种是按照其一级分子结构的分子分类法(Ambler 分类系统)[5]，也是目前最常用的分类方法[6]。第二种是按照其结合水解和抑制功能特性的功能性分类法(Bush-Jacoby 分类系统)[7]。《临床微生物手册》给出了 β-内酰胺酶分类，见表1，可供参考[8]。碳青霉烯酶是一种能水解碳青霉烯类抗生素(如厄他培南、亚胺培南与美罗培南)的 β-内酰胺酶。通常情况下，碳青霉烯酶也可以水解 β-内酰胺类抗生素，如青霉素类， β-内酰胺类-β-内酰胺酶抑制剂复合剂，头孢菌素类等。通常而言，碳青霉烯酶的耐药性是肺炎克雷伯菌的重要特征，其耐药性对目前所有 β-内酰胺类抗生素耐药的主要原因。自从IMP-1 自肺炎克雷伯菌鉴定出后，多种碳青霉烯酶陆续发现，如GES-4、VIM-1、NDM-1、OXA-48、KPC-2。其中 KPC 酶成为最重要的碳青霉烯酶，可由质粒介导快速传播。IMP 对碳青霉烯类抗生素水解能力较弱，携带并不一定在药敏试验中对碳青霉烯类耐药。Ambler 分类法将 β-内酰胺酶分为 A、B、C 和 D 四类 β-内酰胺酶。碳青霉烯酶根据其分子结构的差异分为 3 类，分别隶属于 Ambler 分类系统的 A、B 和 D 类 β-内酰胺酶，由 bla 基因编码。A 类和 B 类碳青霉烯酶需要丝氨酸作为他们的活化位点，而 B 类金属 β-内酰胺酶 (metallo-β-lactamases，MBLs) 需要金属锌作为其活化中心。Ambler A 类 β-内酰胺酶是最大的一类 β-内酰胺酶，其特点是活性部位含有丝氨酸。它能够灭活大部分的 β-内酰胺类药物。该类 β-内酰胺酶包括青霉素酶、头孢菌素酶窄谱。超广谱 β-内酰胺酶(extended spectrum β-lactamases，ESBLs)和碳青霉烯酶。它们对碳青霉烯酶和头孢菌素的抑制作用的敏感性是可变的，但都可被新型 β-内酰胺酶抑制剂包括阿维巴坦、瑞米巴坦 (relubactam) 和维博巴坦 (vaborbaactam) 所抑制[7,9]。在 CR-KP 中经常观察到的各种重要的 β-内酰胺酶酶 [例如 ESBLs (TEM、SHV、CTX-M) 和 KPC] 都属于这类 β-内酰胺酶。TEM 型 β-内酰胺酶能够水解早期头孢菌素和青霉素，对肺炎克雷伯菌中比较常见。SHV-1 具有与 TEM-1 相似的底物和抑制谱，几乎普遍存在肺炎克雷伯菌中[10]。因为抗生素的选择压力及耐药基因在各个细菌之间进行转移，TEM 和 SHV 酶的基因均可发生相当多的突变，导致这两种酶类型的高度多样性，也增加抗生素的耐药范围[7,10]。目前已有报道 SHV-1 和 SHV-11 的大量产生降低了哌拉西林-他唑巴坦的有效性[11]。包括 CTX-M 在内的其他 A 类 ESBLs(PER 酶、GES 酶和 VEB 酶等) 目前已在包括肺炎克雷伯菌、鲍曼不动杆菌、肠杆菌在内的肠杆菌菌病原体中得到鉴定[12,13]。大多数 A 类 ESBLs 仍然对克拉维酸敏感。但仍然有部分 A 类 ESBLs (如 TEM-30、SHV-10 和 TEM-50) 表现出对各种 β-内酰胺酶抑制剂的敏感性降低[14]。产碳青霉烯酶 (如 KPC 酶) 的肺炎克雷伯菌早有报道，而且是引起 CR-KP 的重要原因，如 KPC-1 可导致对碳青霉烯酶抑制剂的耐药性降低[15]。KPC 酶的编码基因通常位于转座子 Tn4401 内，允许其在其他革兰阴菌中传播[16]。虽然在含有 KPC 丝氨酸碳青霉烯酶的肺炎克雷伯菌中发现 β-内酰胺酶抑制剂的抑制剂，但碳 KPC 酶的感染仍然可以成功地使用各种新的 β-内酰胺酶抑制剂组合来治疗，包括亚胺培南-瑞米巴坦、美罗培南-维博巴坦和头孢他啶-阿维巴坦[17]。但不幸的是，目前已有关于产 KPC 酶的肺炎克雷伯菌头孢他啶-阿维巴坦耐药的报道[18,19]。Ambler B 类 β-内酰胺酶在肺炎克雷伯菌中分布很广，但由于其活性位点上需要锌离子，故而也称为 MBLs。MBLs 能水解大多数β-内酰胺酶，包括青霉素类、头孢菌素类、碳青霉烯类和 β-内酰胺酶抑制剂，但氨曲南除外，其可被乙二
胺四乙酸 EDTA 抑制\(^7,\,20,\,21\)。由于重要的 MBLs（如 IMP-VIM 和 NDM 家族的 MBLs）都可被整合到可移动基因元件中，而伴随着这些可移动基因元件在细菌之间的转移，碳青霉烯酶的氨基发生取代，产生碳青霉烯酶的同变体。这导致碳青霉烯酶的活性及其对碳青霉烯类抗生素的亲和力发生变化，所以对 MBLs 需要引起特别的关注\(^{22,\,23}\)。Ambler D 类 β-内酰胺酶主要由苯唑西林水解酶 (oxacillin hydrolase, OXA) 组成。水解具有 ESBLs 样底物特性的苯唑西林及其衍生物，几乎所有 OXA 酶，除了 OXA-18，都对 β-内酰胺酶抑制剂耐药\(^7,\,24\)。肺炎克雷伯菌可通过携带带有 OXA-48 基因的质粒来表达获得 OXA-48\(^25\)。同时这些质粒中也编码了其他 ESBLs，如 CTX-M，从而使肺炎克雷伯菌对大多数 β-内酰胺类抗生素耐药\(^{26}\)。

<table>
<thead>
<tr>
<th>表 1</th>
<th>β-内酰胺酶分类</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bush-Jacoby 分类系统</td>
<td>Ambler 分类系统</td>
</tr>
<tr>
<td>1 组头孢菌素酶</td>
<td>C 类 (Amp C 酶)</td>
</tr>
<tr>
<td>2 组青霉素酶</td>
<td>A 类 (青霉素 A)</td>
</tr>
<tr>
<td>2b</td>
<td>A 类</td>
</tr>
<tr>
<td>2be</td>
<td>A 类</td>
</tr>
<tr>
<td>2c</td>
<td>A 类</td>
</tr>
<tr>
<td>2e</td>
<td>A 类</td>
</tr>
<tr>
<td>2f</td>
<td>A 类</td>
</tr>
<tr>
<td>2d</td>
<td>D 类 (OXA)</td>
</tr>
<tr>
<td>3 组 MBLs</td>
<td>B 类 (金属酶)</td>
</tr>
<tr>
<td>3b</td>
<td>B 类</td>
</tr>
<tr>
<td>3c</td>
<td>B 类</td>
</tr>
<tr>
<td>4 组</td>
<td>未分类</td>
</tr>
</tbody>
</table>

1.2 孔蛋白外膜蛋白通道（孔蛋白）的数量及功能的改变也是碳青霉烯类耐药的重要机制。CR-KP 中经常观察到主要外膜蛋白 OmpK36 和 OmpK35 的改变\(^{27}\)。这些改变可能在治疗过程中出现，增强了其他抵抗机制的影响，如降解酶。在治疗莫西沙星敏感的肺炎克雷伯菌感染时，发生了 OmpK36 的缺失及 Amp C β-内酰胺酶的表达\(^{28}\)。也有报道\(^{29,\,30}\)称肺炎克雷伯菌孔蛋白突变确实降低了肺炎克雷伯菌对碳青霉烯的敏感性，但不赋予其临床耐药性，需要 β-内酰胺酶。荚膜的生成似乎也和孔蛋白的生成有者一些联系。Kvra 是一种控制荚膜的产生，其转录抑制因子。目前已有报道证明 Kvra 的缺失降低了 OmpK35 和 OmpK36 孔蛋白的产生，从而降低了产 KPC-3 的肺炎克雷伯菌对美罗培南-维博坦巴的敏感性\(^{31}\)。

1.3 外排泵外排泵能够主动将药物挤出细胞，其编码基因可以位于染色体上或是可移动基因元件。已经被鉴定的外排泵有 6 个主要家族：RND 家族、MFS 家族、MATE 家族、SMR 家族、ABC 家族和 PACE 家族\(^{32-\,34}\)。大多数外排泵是多药转运体，能有效地泵出多种抗生素，从而导致多重耐药性。其中 RND 家族外排泵在革兰阴性菌中是特别值得关注的。这种类型的外排泵可以排出各种抗生素和结构上不相关的分子。AcrAB-TolC 是典型的 RND 超家族的多药外排泵，通常被染色体编码的，但也可以通过质粒获得。在肺炎克雷伯菌中 AcrAB-TolC 的过量生产是多重耐药的重要特点，其缺失时，多种药物的耐药性也降低数倍\(^{35,\,36}\)。而且在含有碳青霉烯酶的肺炎克雷伯菌中，AcrA 基因与 β-内酰胺酶活性会产生协同效应，导致高水平的碳青霉烯类耐药性\(^{37}\)。

2 常用的分子生物学检测技术
目前，临床上检测 CR-KP 的方法仍然是以培养作为鉴定的金标准，但由于培养所需的时间较长，会导致临床错过最佳的治疗时间，降低了临床患者的生存率。分子生物学检测方法由于其灵敏度和快速的优点，可大大弥补培养导致的延迟。以下简要介绍几种分子生物学检测 CR-KP 的技术。

2.1 聚合酶链反应（polymerase chain reaction, PCR）类技术 目前应用于检测的 PCR 方法主要有普通 PCR、实时定量 PCR 及多重 PCR，可用于检测 KPCs、NDMs、IMPs、VIMs 与 OXA-48 等碳青霉烯类耐药基因。普通 PCR 及实时定量 PCR 无论是临床还是其他地方，已被广泛接受。而多重 PCR，相比于普通 PCR 及实时定量 PCR，其能够同时检测多个基因的特点，曾引起广泛关注，但其受到引物及靶标设计等诸多因素影响，限制了其发展\(^{38-\,41}\)。赛波公司的 GeneXpert 分子诊断系统推出的 Xpert Carba-R 检测试验盒与生物梅立克公司的 FilmArray 的多重 PCR 分子诊断系统，可在大约 1 h 内直接从标本或
纯菌落中定性检测和区分常见碳青霉烯酶基因（如 blaKPC, blaNDM, blaVIM, blaOXA-48 和 blaIMI）, 其灵敏度和特异度均较高[42-44]。PCR 类技术最大的优点是快速、灵敏, 但缺陷也相当明显, 只能用来检测有限的已知的基因, 不能发现新的相关基因。

2.2 基质辅助激光解吸电离飞行时间质谱（matrix-assisted laser desorption ionization-time-of-flight mass spectrometry, MALDI-TOF MS）检测技术　MALDI-TOF MS 的原理是用激光照射样品与基质形成的共结晶薄膜, 使生物分子电离, 然后在电场作用下飞过飞行管, 检测到达检测器的飞行时间来测定离子的质荷比 (M/Z)。目前, 已广泛应用于微生物的鉴定。MALDI-TOF MS 检测耐药主要通过检测细菌产生的酶, 天活抗生素产生的物质或者耐药细菌特有的物质等[45]。相比于改良的 Hodge 实验, 脉冲场凝胶电泳等技术, 其准确性高, 灵敏度及特异度较高。</p>

2.3 测序技术　目前应用最广泛的就是全基因组测序（whole genome sequencing, WGS）。基因组包含了细菌的全部遗传信息, 进行 WGS 可以精确细菌的具体耐药基因, 预测细菌的耐药情况, 发掘潜在未知的耐药机制[46]。但是 WGS 的缺陷也非常明显, 其成本高, 用时长等。所以目前尚未应用于临床的检测, 仅用于科研工作。近年来 Nanopore 测序技术用于耐药菌的检测, 因其灵敏度高, 用时短, 成本低等优点, Nanopore 技术也引起了关注[49]。

2.4 环介导等温扩增（loop-mediated isothermal amplification, LAMP）技术　LAMP 技术是一种新型的核酸扩增方法, 其特点是针对靶基因的 6 个区域设计 4 种特异引物, 在 DNA 聚合酶的作用下, 60-65 ℃恒温扩增, 1 h 左右即可完成核酸扩增, 效率可达 10^{9-10} 个数量级, 具有操作简单、特异性强, 产物易检测等特点[50]。检测可以在水浴或加热块中进行[51]。相比于 PCR, LAMP 检测产 KPC 酶的肺炎克雷伯菌的灵敏度、特异度更高且更快[52]。但目前 LAMP 技术远没有 PCR 技术成熟, 这可能是限制其应用于临床的重要因素之一。

3 小结　碳青霉烯类抗生素一直是治疗肠杆菌属 (如肺炎克雷伯菌) 引起的严重感染的最主要的药物。但近年来, 碳青霉烯类抗生素的滥用造成了选择压力, 导致耐药基因突变或传播。肺炎克雷伯菌通过 β-内酰胺酶、孔蛋白的改变和外排泵活性的增加获得高水平的耐药性。这强调了在治疗过程中需要正确使用碳青霉烯类抗生素。本文仅简要对肺炎克雷伯菌的碳青霉烯类抗生素的耐药机制进行了总结。其中一部分耐药基因可以编码到可移动遗传元件上, 而这些移动元件上同时又编码了其他的毒力及耐药基因, 这就导致高毒力高耐药的肺炎克雷伯菌的出现[53,54]。但目前对于 CR-KP 的诊断还仍然以培养作为金标准, 报告周期较长, 不能及时指导临床合理用药。虽然目前已经有多种分子生物学检测技术如 PCR, MALDI-TOF MS, 测序和 LAMP 等技术, 但由于诸如设计, 成本等多种原因, 大部分方法目前尚未应用于临床。使得报告周期没有明显缩短。所以了解 CR-KP 的耐药机制, 改进检测方法, 便可应用于临床尽早作出报告, 有助于对其进行预防及控制, 防止其进一步恶化。

本文引用格式