引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 420次   下载 439 本文二维码信息
码上扫一扫!
分享到: 微信 更多
超高b值ADC图像联合PSAD对前列腺中央腺体区域病灶的诊断价值研究
叶 飞,黄洪磊,范峥荣,李 凤
福建医科大学附属南平第一医院医学影像科,南平 353000
摘要:
[摘要] 目的 探讨超高b值表观扩散系数(ADC)图像联合前列腺特异性抗原密度(PSAD)对前列腺中央腺体区域病灶的诊断价值。方法 回顾性分析2023年7月至2025年3月福建医科大学附属南平第一医院收治的临床怀疑前列腺癌(PCa),并接受前列腺磁共振成像(MRI)常规检查及b值=3 000 s/mm2的弥散加权成像(DWI)检查的106例患者的临床资料,病灶位于前列腺中央腺体区域,前列腺影像报告和数据系统(PI-RADS) v2.1评分为3~5分。获取ADC平均值(ADCmean)、ADC最小值(ADCmin)和相对偏差(RD)。应用化学发光免疫法检测血清前列腺特异性抗原(PSA)水平,并计算PSAD。结果 106例患者经病理检查确诊中央腺体前列腺癌(CGPCa)54例(CGPCa组),良性前列腺增生(BPH)52例(BPH组)。CGPCa组ADCmin和ADCmean水平低于BPH组,RD、PSA和PSAD水平高于BPH组,差异有统计学意义(P<0.05)。受试者工作特征(ROC)曲线分析结果显示,ADCmin、ADCmean、RD、PSA和PSAD均能有效鉴别诊断CGPCa与BPH(P<0.05)。选择诊断效能较高的3个指标(ADCmin、RD和PSAD)构建联合诊断模型。DeLong检验结果显示,三指标联合的诊断效能较单一指标更高(Z三指标联合-ADCmin=1.968,P=0.049;Z三指标联合-PSAD=2.081,P=0.037;Z三指标联合-RD=1.992,P=0.046),灵敏度为74.07%,特异度为100.00%。结论 基于ADCmin、RD、PSAD构建的诊断模型在鉴别CGPCa与BPH方面优势显著,可提高对前列腺中央腺体区域病灶的诊断效能,为精准区分CGPCa与BPH提供了新的方法策略,具有较好的临床应用价值。
关键词:  中央腺体前列腺癌  良性前列腺增生  超高b值  表观扩散系数  相对偏差  前列腺特异性抗原密度
DOI:10.3969/j.issn.1674-3806.2025.10.10
分类号:
基金项目:福建省自然科学基金资助项目(编号:2023J011871)
Study on diagnostic value of ultra-high b-value ADC images combined with PSAD for lesions in prostate central gland region
YE Fei, HUANG Honglei, FAN Zhengrong, LI Feng
Department of Medical Imaging, Nanping First Hospital Affiliated to Fujian Medical University, Nanping 353000, China
Abstract:
[Abstract] Objective To explore the diagnostic value of ultra-high b-value apparent diffusion coefficient(ADC) images combined with prostate-specific antigen density(PSAD) for lesions in the prostate central gland region. Methods A retrospective analysis was conducted on the clinical data of 106 patients with suspected prostate cancer(PCa) and undergoing routine magnetic resonance imaging(MRI) examination for the prostate and diffusion-weighted imaging(DWI) examination with a b-value of 3 000 s/mm2 from July 2023 to March 2025 in Nanping First Hospital Affiliated to Fujian Medical University. The lesions were located in the central gland region of the prostate and were scored 3-5 points according to the Prostate Imaging Reporting and Data System(PI-RADS) version 2.1. The mean ADC(ADCmean), minimum ADC(ADCmin), and relative deviation(RD) were obtained. The levels of prostate-specific antigen(PSA) were detected by using chemiluminescent immunoassay, and PSAD was calculated. Results Among the 106 patients, 54 patients were diagnosed with central gland prostate cancer(CGPCa )(CGPCa group) by pathological examination, and 52 patients were diagnosed with benign prostatic hyperplasia(BPH)(BPH group) by pathological examination. The levels of ADCmin and ADCmean in the CGPCa group were lower than those in the BPH group, while the levels of RD, PSA and PSAD in the CGPCa group were higher than those in the BPH group, with statistically significant differences(P<0.05). The results of receiver operating characteristic(ROC) curve analysis showed that ADCmin, ADCmean, RD, PSA and PSAD could effectively differentiate CGPCa from BPH(P<0.05). The 3 indicators(ADCmin, RD and PSAD) having higher diagnostic efficiency were selected to construct a combined diagnostic model. The results of DeLong′s test showed that the diagnostic efficiency of the combination of the three indicators was higher than that of a single indicator(Zthree-indicator combination-ADCmin=1.968, P=0.049; Zthree-indicator combination-PSAD=2.081, P=0.037; Zthree-indicator combination-RD=1.992, P=0.046), with a sensitivity of 74.07% and a specificity of 100.00%. Conclusion The diagnostic model constructed on basis of ADCmin, RD and PSAD exhibits significant advantages in differentiating CGPCa from BPH, enhancing the diagnostic efficiency for lesions in the central gland region of the prostate. This model provides a novel methodological strategy for accurately distinguishing CGPCa from BPH and has good clinical application value.
Key words:  Central gland prostate cancer(CGPCa)  Benign prostatic hyperplasia(BPH)  Ultra-high b-value  Apparent diffusion coefficient(ADC)  Relative deviation(RD)  Prostate-specific antigen density(PSAD)